Home Environmental Software
 
Environment
River and Stream Water Quality Model (QUAL2K) PDF Print E-mail
User Rating: / 38
PoorBest 

Our rating:          License:  Free 

QUAL2K (or Q2K) is a river and stream water quality model that is intended to represent a modernized version of the QUAL2E (or Q2E) model (Brown and Barnwell 1987). Q2K is similar to Q2E in the following respects:

One dimensional. The channel is well-mixed vertically and laterally.

  • Steady state hydraulics. Non-uniform, steady flow is simulated.
  • Diurnal heat budget. The heat budget and temperature are simulated as a function of meteorology on a diurnal time scale.
  • Diurnal water-quality kinetics. All water quality variables are simulated on a diurnal time scale.
  • Heat and mass inputs. Point and non-point loads and abstractions are simulated.
Read more...
 
Water Quality Analysis Simulation Program (WASP) PDF Print E-mail
User Rating: / 72
PoorBest 

Our rating:          License:  Free 

The Water Quality Analysis Simulation Program. (WASP7), an enhancement of the original WASP (Di Toro et al., 1983; Connolly and Winfield, 1984; Ambrose, R.B. et al., 1988). This model helps users interpret and predict water quality responses to natural phenomena and manmade pollution for various pollution management decisions. WASP is a dynamic compartment-modeling program for aquatic systems, including both the water column and the underlying benthos. WASP allows the user to investigate 1, 2, and 3 dimensional systems, and a variety of pollutant types. The state variables for the given modules are given in the table below. The time varying processes of advection, dispersion, point and diffuse mass loading and boundary exchange are represented in the model. WASP also can be linked with hydrodynamic and sediment transport models that can provide flows, depths velocities, temperature, salinity and sediment fluxes.

WASP has been used to examine eutrophication of Tampa Bay, FL; phosphorus loading to Lake Okeechobee, FL; eutrophication of the Neuse River Estuary, NC; eutrophication Coosa River and Reservoirs, AL; PCB pollution of the Great Lakes, eutrophication of the Potomac Estuary, kepone pollution of the James River Estuary, volatile organic pollution of the Delaware Estuary, and heavy metal pollution of the Deep River, North Carolina, mercury in the Savannah River, GA.

Read more...
 
Environmental Fluid Dynamics Code (EFDC) PDF Print E-mail
User Rating: / 73
PoorBest 

Our rating:          License:  Free 

The Environmental Fluid Dynamics Code (EFDC Hydro) is a state-of-the-art hydrodynamic model that can be used to simulate aquatic systems in one, two, and three dimensions. It has evolved over the past two decades to become one of the most widely used and technically defensible hydrodynamic models in the world. EFDC uses stretched or sigma vertical coordinates and Cartesian or curvilinear, orthogonal horizontal coordinates to represent the physical characteristics of a waterbody. It solves three-dimensional, vertically hydrostatic, free surface, turbulent averaged equations of motion for a variable-density fluid. Dynamically-coupled transport equations for turbulent kinetic energy, turbulent length scale, salinity and temperature are also solved. The EFDC model allows for drying and wetting in shallow areas by a mass conservation scheme. The physics of the EFDC model and many aspects of the computational scheme are equivalent to the widely used Blumberg-Mellor model and U. S. Army Corps of Engineers’Chesapeake Bay model. EFDC’s role in the TMDL Toolbox will be to provide necessary hydrodynamic inputs to WASP, the advanced receiving water quality model.

Read more...
 
«StartPrev12345678910NextEnd»

Page 9 of 10